

On the Challenges of Self-Adaptation in
Systems of Systems

Danny Weyns and Jesper Andersson

First International Workshop on Software Engineering
Systems of Systems – SESoS 2013

Montpellier, 2nd July 2013

Se#ng	

	
	
Guaranteeing	 run+me	 quali,es	 of	 SoS	 is	 complex	 due	
uncertain+es	 (systems	 detach	 at	 will,	 resources	 change,	 etc.)	 	
	
Self-‐adapta+on	 enables	 a	 system	 to	 adapt	 itself	 to	 achieve	
par,cular	 quality	 goals	 in	 face	 of	 uncertainty	 and	 change	 	
	
State	 of	 the	 art	 self-‐adapta,on	 centralized	 and	 hierarchical	
solu+ons,	 which	 are	 not	 applicable	 to	 SoS	
	
	

Proposal	

	
3	 architectural	 styles	 for	 self-‐adapta+on	 in	 SoS	
	

	 -‐	 Decentralized	 control	 with	 increasing	 levels	 of	
	 	 	 	 knowledge	 sharing	 and	 collabora,on	
	 -‐	 Challenge	 of	 guaranteeing	 proper,es	 that	 span	 	 	
	 	 	 	 mul,ple	 systems	 of	 SoS	

	
	

Overview	
	
• SoS	
• Self-‐Adapta,on	

• Local	 adapta,ons	 	
• Regional	 monitoring	 –	 local	 adapta,ons	 	
• Collabora,ve	 adapta,ons	

• Wrap	 up	
	
	

SoS	

	
• An	 assembly	 of	 components	 which	
individually	 may	 be	 regarded	 as	 systems	
[Maier	 ‘98]	
• Two	 key	 characteris,cs	 	
• Opera,onal	 independence	 	
• Managerial	 independence	

	
	

Self-‐adap,ve	 soRware	 system	

Managed	 system	

Environment	

Managing	 system	

Self-‐adap,ve	 soRware	 system	

monitor	 effect	

monitor	 adapt	

Non-‐controllable	 soRware,	 	
hardware,	 network,	 physical	 context	

Controllable	 soRware	

monitor	

MAPE-‐K	 approach	

ponent systems are separately acquired and integrated

but maintain a continuing operational existence inde-

pendent of the SoS.

Based on this characterization, Maier identifies a set of guid-

ing design principles for SoS:

• Stable intermediate forms: individual systems or sub-

sets of systems of a SoS should be capable of operating

and fulfilling useful purposes, before full deployment

and during operation.

• Policy triage: A SoS design team should carefully

choose what to control; over-control will fail for lack of

authority, under-control will eliminate the integrated

nature of the SoS.

• Leverage at the interfaces: The architecture of a SoS

is essentially defined by its interfaces, which are the

primary points at which designers can exert control.

• Ensuring collaboration: Mechanisms should be ex-

ploited that create joint utility, which is known to

be a basis for consistent behavior.

2.2 Self-Adaptation
Self-adaptation has been widely recognized as an effec-

tive approach to deal with the increasing complexity and

dynamicity of modern software systems [22, 17, 6, 19]. A

self-adaptive system comprises two parts: the managed sys-

tem (also called system layer [10], managed resources [16],

base-level subsystem [28], target system [13]) that deals with

the domain functionality, and the managing system (or ar-

chitecture layer [10], autonomic manager [16], reflective sub-

system [28], controller [13]) that deals with the adaptations

of the managed system to achieve particular quality goals.

One influential approach to structure the managed system

is by means of four components that realize a feedback loop:

Monitor-Analyze-Plan-Execute supported by a Knowledge

repository [16] (MAPE-K). Figure 1 shows the elements of a

MAPE-K system.

Figure 1: Elements of a MAPE-K managed system

A monitor component gathers information from the man-

aged system and possibly the system’s environment to up-

date a set of models of the knowledge repository. An analyze

component examines the gathered data and based on the

adaptation goals draws conclusions on whether further ac-

tions should be undertaken. A plan component puts together

a series of adaptation actions to resolve the problem identi-

fied by an analyze component. The actions to the managed

system are then carried out by an execution component.

Examples of MAPE-K based approaches are the Rainbow

framework [10] that employs constraints defined over an

architectural model of the managed system to realize self-

adaptation, and K-Components [9] that reifies a system’s

component architecture as a configuration graph that can be

rewritten by a configuration manager to adapt the system

when needed.

Another well-studied approach to realize the managed sys-

tem is by means of a controller. Figure 2 shows the elements

of a closed loop control system. The target system is the

Figure 2: Elements of a closed loop control system

managed system. The measured output is the subject of

control. The disturbance input is any change that affects

the measured output and for which adaptation is required.

Noise input affects the measured output produced by the

target system. The reference input is the desired value of

the measured output, and the control error is the differ-

ence between reference input and measured output. The

transducer transforms the measured output so that it can

be compared by the reference input. Based on the control

error, the controller determines the setting of the control

input that manipulates one or more parameters of the target

system. An example of control-based self-adaptation for high-

performance servers is described in [2]. Servers are modeled

as difference equations and different types of controllers (e.g.

Proportional, Integral) are applied to deal with performance

requirements (e.g., server response time, convergence). [8]

employs multi-input multi-output techniques for controlling

a Web server. System models are derived from experiments

and the controller optimizes CPU and memory usage based

on a cost function.

3. ARCHITECTURAL STYLES OF SELF-
ADAPTATION FOR SOS

As the constituent systems of a SoS are independently

developed and operated, SoS are inherently decentralized

systems. The SoS architect has to express the overall ar-

chitecture through the specification of the communication

elements between abstractions of the constituent systems of

the SoS. In general, this requires well-defined communication

protocols at different levels of the technology stack.

To deal with particular quality requirements, a managing

layer can be added to a SoS, resulting in a self-adaptive

SoS. The typical architecture of a self-adaptive SoS thus

consists of a set of interacting managed systems that are

Control-‐based	 approach	

ponent systems are separately acquired and integrated

but maintain a continuing operational existence inde-

pendent of the SoS.

Based on this characterization, Maier identifies a set of guid-

ing design principles for SoS:

• Stable intermediate forms: individual systems or sub-

sets of systems of a SoS should be capable of operating

and fulfilling useful purposes, before full deployment

and during operation.

• Policy triage: A SoS design team should carefully

choose what to control; over-control will fail for lack of

authority, under-control will eliminate the integrated

nature of the SoS.

• Leverage at the interfaces: The architecture of a SoS

is essentially defined by its interfaces, which are the

primary points at which designers can exert control.

• Ensuring collaboration: Mechanisms should be ex-

ploited that create joint utility, which is known to

be a basis for consistent behavior.

2.2 Self-Adaptation
Self-adaptation has been widely recognized as an effec-

tive approach to deal with the increasing complexity and

dynamicity of modern software systems [22, 17, 6, 19]. A

self-adaptive system comprises two parts: the managed sys-

tem (also called system layer [10], managed resources [16],

base-level subsystem [28], target system [13]) that deals with

the domain functionality, and the managing system (or ar-

chitecture layer [10], autonomic manager [16], reflective sub-

system [28], controller [13]) that deals with the adaptations

of the managed system to achieve particular quality goals.

One influential approach to structure the managed system

is by means of four components that realize a feedback loop:

Monitor-Analyze-Plan-Execute supported by a Knowledge

repository [16] (MAPE-K). Figure 1 shows the elements of a

MAPE-K system.

Figure 1: Elements of a MAPE-K managed system

A monitor component gathers information from the man-

aged system and possibly the system’s environment to up-

date a set of models of the knowledge repository. An analyze

component examines the gathered data and based on the

adaptation goals draws conclusions on whether further ac-

tions should be undertaken. A plan component puts together

a series of adaptation actions to resolve the problem identi-

fied by an analyze component. The actions to the managed

system are then carried out by an execution component.

Examples of MAPE-K based approaches are the Rainbow

framework [10] that employs constraints defined over an

architectural model of the managed system to realize self-

adaptation, and K-Components [9] that reifies a system’s

component architecture as a configuration graph that can be

rewritten by a configuration manager to adapt the system

when needed.

Another well-studied approach to realize the managed sys-

tem is by means of a controller. Figure 2 shows the elements

of a closed loop control system. The target system is the

Figure 2: Elements of a closed loop control system

managed system. The measured output is the subject of

control. The disturbance input is any change that affects

the measured output and for which adaptation is required.

Noise input affects the measured output produced by the

target system. The reference input is the desired value of

the measured output, and the control error is the differ-

ence between reference input and measured output. The

transducer transforms the measured output so that it can

be compared by the reference input. Based on the control

error, the controller determines the setting of the control

input that manipulates one or more parameters of the target

system. An example of control-based self-adaptation for high-

performance servers is described in [2]. Servers are modeled

as difference equations and different types of controllers (e.g.

Proportional, Integral) are applied to deal with performance

requirements (e.g., server response time, convergence). [8]

employs multi-input multi-output techniques for controlling

a Web server. System models are derived from experiments

and the controller optimizes CPU and memory usage based

on a cost function.

3. ARCHITECTURAL STYLES OF SELF-
ADAPTATION FOR SOS

As the constituent systems of a SoS are independently

developed and operated, SoS are inherently decentralized

systems. The SoS architect has to express the overall ar-

chitecture through the specification of the communication

elements between abstractions of the constituent systems of

the SoS. In general, this requires well-defined communication

protocols at different levels of the technology stack.

To deal with particular quality requirements, a managing

layer can be added to a SoS, resulting in a self-adaptive

SoS. The typical architecture of a self-adaptive SoS thus

consists of a set of interacting managed systems that are

SoS	 as	 a	 managed	 system	

	
• No	 single	 en,ty	 with	 knowledge/
authority	 to	 adapt	 systems	 of	 SoS	

• Adapta,on	 is	 decentralized	
	

Overview	
	
• SoS	
• Self-‐Adapta,on	

• Local	 adapta,ons	 	
• Regional	 monitoring	 –	 local	 adapta,ons	 	
• Collabora,ve	 adapta,ons	

• Wrap	 up	
	
	

Local	 	
Adapta,ons	

controlled by local feedback loops. For SoS, in general no

assumptions can be made about the presence of systems,

availability of external resources, prediction of faults, etc. To

deal with these uncertainties, a key challenge is to provide

guarantees for properties that span multiple systems of the

SoS. These properties refer to the adaption requirements

and other behavioral aspects such as stability and transient

behavior. Handling uncertainties is currently subject of active

research in the field of self-adaptation. SoS add another

dimension of complexity to the problems of uncertainty due

to their inherent decentralized nature.

Figure 3 shows three basic architecture styles to struc-

ture the managing layer of a SoS. We derived the styles

from classic control architectures, see e.g. [3], and generaliza-

tions over concrete architectural patterns for decentralized

self-adaptation described in [29]. The three styles provide

increasing levels of knowledge sharing and collaboration,

allowing to mitigate uncertainty at different scales.

We now discuss the three styles. We give illustrative ex-

amples from our practice, identify a number of challenges,

and provide some starting points that could help tackling

the challenges. Although the different examples do not fully

comply to Maier’s properties of a SoS, they are decentralized

systems where self-adaptation is realized with the different

styles. As such they can serve as basic examples for the

application of three architectural styles in SoS settings.

3.1 Local Adaptations
The first style, local adaptations represents a fully decen-

tralized adaptation architecture. In this style, feedback loops

do not coordinate directly, but, typically there will be in-

direct interactions. E.g., a local feedback loop may affect

the response time of the local managed system, triggering

other feedback loops to adapt. In a recently started project,

called CareSmart, we study the application of smart home

technology to provide innovative services for elderly care

living in their own houses. The architecture of the system

consists of smart home systems that collect and synthesize

sensor data at the homes of the elderly people. Useful data

is sent to mobile care assistant systems that welfare helpers

can use to make decisions about visits and interact with the

elderly or other persons when needed. This collaborative

system provides different types of local adaptations. For

example, each smart home system is provided with a context

adaptor that detects changes in the context and dynamically

adapts services based on the preferences of the elderly. E.g.,

the adaptor may activate a service that enables an elderly to

alarm a relative via voice when he/she enters the bathroom

without having the alarm with him/her. Mobile care assis-

tants also have a context-adaptor that activates for example

a service that provides specific information of an elderly once

the welfare helper approaches his or her home. Initial results

of the CareSmart project are reported in [18].

In the local adaptations style the design problem of self-

adaption for a SoS boils down to the design of local feedback

loops. However, this style provides limited support to each of

the guiding design principles for SoS proposed by Maier. As

feedback loops share no information with each other, there

is a high-degree of uncertainty regarding other systems and

the environment. Consequently, the approach is sensitive to

side-effects of indirect interactions between individually well-

optimized systems, as well as emergent behavior that results

from interactions between the compositions of systems. In

Figure 3: Basic architectural styles of decentralized
self-adaptation in SoS

the CareSmart project for example, the activation of context-

dependent services by elderly people may trigger a series of

reschedules of visit plans of mobile care assistants. To deal

with the uncertainties of local adaptations, [1] points to the

need for analysis tools that allow to understand and quantify

the effects of indirect interactions, as well as runtime support

for dynamic verification of the design assumptions coupled

with appropriate actions when violations are detected. A

number of interesting approaches have been proposed to

analyze properties of a SoS (e.g., stability) based on the

local adaptations style. Examples are analyses based on

an integrated transfer function of a (partial) composition of

systems [27] and grouping of local controllers [26]. Interesting

fields that provide various techniques that can potentially

be used for the analysis of properties of SoS designed with

the local adaptations style are complex system theory and

economics [14]. Examples are analysis based on the principles

of entropy, Pareto efficiency, and the Nyquist stability.

3.2 Regional Monitoring–Local Adaptations
The second style, regional monitoring–local adaptations

enables local feedback systems to gather runtime data from

neighboring systems to support local decision making of adap-

tations. This data can be exploited to reduce the potential

side effects of purely decentralized adaptation architecture.

[24] discusses an example application where we have applied

the second style. The application in an intelligent traffic

monitoring system that provides information about traffic

jams to clients, such as traffic light controllers, driver assis-

Local	 adapta,ons	 style	

Modern Information Technology – !"#$%&' (&)*+,$-'.&' /01&*2*3'4 2013

- 2 -

communication facilities to interact with elderly and welfare helpers. The Department Server has a
dual role: collecting relevant data produced by the different systems to support analysis (e.g., to detect
patterns in the behaviour of users), and providing a repository where new software can be downloaded.

The right part of Figure 1 shows the top-level decomposition of the smart home system. The
Auto-Configurator supports dynamic discovery of (new) sensors and services, and configures the
system based on personal needs and living conditions of the elderly. Self-configuration may require
download of software at the department server. The Context-Adaptor detects changes in the context
and dynamically adapts services based on the preferences of the elderly. As an example, the adaptor
may activate a service that enables an elderly to alarm a relative via voice when he/she enters the
bathroom without having the alarm with him/her. The mobile care assistant has a similar architecture,
where the auto-configurator and context-adaptor supports adaptation functions related to the services
of the care providers. As an example, the adaptor may activate a service that provides particular
information regarding an elderly once the welfare helper approaches the home of the elderly.

Figure 1. High-level architecture of ICT solution and Smart Home sysytem

Related Work. The usefulness of ICT solutions in the domain of assisted living has been shown
in previous studies [3]. Lessons learned from previous and on-going projects will be taken into account
in this research, such as the TigerPlace project [4], which provides a carefully designed monitoring
system, but lacks focus on user interaction and injury prevention aspects, or the PERSONA [5] and
universAAL [6] projects that propose comprehensive designs for assisted living infrastructures, but
focus on the business perspective instead of concrete solutions. In general, existing studies indicate
that the success of solutions depends on stakeholder involvement and multi-disciplinarity of research.

Ongoing and Future work. Currently, we are finalizing the design of the self-adaptive software
system together with the implementation of an initial prototype. To perform initial tests, we are
developing an emulator of the sensor infrastructure. The next task will be the design and
implementation of user interfaces that allow stakeholders to effectively use the services. Once the
initial prototype is operational, we will perform a small-scale evaluation in the field. This study will
involve researchers from the Linguistics and Social departments that will perform discourse analysis of
the results of observations and interviews to identify the effectiveness and limitations of the provided
services. The feedback will be used to iteratively and incrementally develop improved solutions. In the
final stage of the research, a systematic empirical study is planned to validate the research results.

REFERENCES
1. Better Society 5 Horizon 2020 5 the Framework Programme for Research and Innovation 5 European

Commission. http://ec.europa.eu/research/horizon2020/index_en.cfm?pg=better-society (retrieved on 26.03.2013)
2. D. Weyns et al. FORMS: Unifying Reference Model for Formal Specification of Distributed Self-Adaptive

Systems. ACM Transactions on Autonomous and Adaptive Systems, TAAS, 7(1), 2012.
3. M. Boulos et al. Connectivity for Healthcare and Well-Being Management: Examples from Six European

Projects. Int .J Environ Res Public Health, 6(7), 2009.
4. M. Skubic et al. A smart home application to eldercare. Technology and Health Care, 17, 2009.
5. M.R. Tazari et al. The PERSONA Service Platform for AAL Spaces. Handbook of Ambient Intelligence and

Smart Environments, Springer, 2010.
6. S. Guillen et al. universAAL Reference Use Cases. http://goo.gl/emWBk (retrieved on 26.03.2013)

Local	 adapta,ons	 style	
	
• Design	 local	 feedback	 loops	
• Feedback	 loops	 interact	 indirectly	 	
•  Sensi,ve	 to	 side	 effects/emergent	 behavior	

Regional	 	
Monitoring	
Local	 	
Adapta,ons	

controlled by local feedback loops. For SoS, in general no

assumptions can be made about the presence of systems,

availability of external resources, prediction of faults, etc. To

deal with these uncertainties, a key challenge is to provide

guarantees for properties that span multiple systems of the

SoS. These properties refer to the adaption requirements

and other behavioral aspects such as stability and transient

behavior. Handling uncertainties is currently subject of active

research in the field of self-adaptation. SoS add another

dimension of complexity to the problems of uncertainty due

to their inherent decentralized nature.

Figure 3 shows three basic architecture styles to struc-

ture the managing layer of a SoS. We derived the styles

from classic control architectures, see e.g. [3], and generaliza-

tions over concrete architectural patterns for decentralized

self-adaptation described in [29]. The three styles provide

increasing levels of knowledge sharing and collaboration,

allowing to mitigate uncertainty at different scales.

We now discuss the three styles. We give illustrative ex-

amples from our practice, identify a number of challenges,

and provide some starting points that could help tackling

the challenges. Although the different examples do not fully

comply to Maier’s properties of a SoS, they are decentralized

systems where self-adaptation is realized with the different

styles. As such they can serve as basic examples for the

application of three architectural styles in SoS settings.

3.1 Local Adaptations
The first style, local adaptations represents a fully decen-

tralized adaptation architecture. In this style, feedback loops

do not coordinate directly, but, typically there will be in-

direct interactions. E.g., a local feedback loop may affect

the response time of the local managed system, triggering

other feedback loops to adapt. In a recently started project,

called CareSmart, we study the application of smart home

technology to provide innovative services for elderly care

living in their own houses. The architecture of the system

consists of smart home systems that collect and synthesize

sensor data at the homes of the elderly people. Useful data

is sent to mobile care assistant systems that welfare helpers

can use to make decisions about visits and interact with the

elderly or other persons when needed. This collaborative

system provides different types of local adaptations. For

example, each smart home system is provided with a context

adaptor that detects changes in the context and dynamically

adapts services based on the preferences of the elderly. E.g.,

the adaptor may activate a service that enables an elderly to

alarm a relative via voice when he/she enters the bathroom

without having the alarm with him/her. Mobile care assis-

tants also have a context-adaptor that activates for example

a service that provides specific information of an elderly once

the welfare helper approaches his or her home. Initial results

of the CareSmart project are reported in [18].

In the local adaptations style the design problem of self-

adaption for a SoS boils down to the design of local feedback

loops. However, this style provides limited support to each of

the guiding design principles for SoS proposed by Maier. As

feedback loops share no information with each other, there

is a high-degree of uncertainty regarding other systems and

the environment. Consequently, the approach is sensitive to

side-effects of indirect interactions between individually well-

optimized systems, as well as emergent behavior that results

from interactions between the compositions of systems. In

Figure 3: Basic architectural styles of decentralized
self-adaptation in SoS

the CareSmart project for example, the activation of context-

dependent services by elderly people may trigger a series of

reschedules of visit plans of mobile care assistants. To deal

with the uncertainties of local adaptations, [1] points to the

need for analysis tools that allow to understand and quantify

the effects of indirect interactions, as well as runtime support

for dynamic verification of the design assumptions coupled

with appropriate actions when violations are detected. A

number of interesting approaches have been proposed to

analyze properties of a SoS (e.g., stability) based on the

local adaptations style. Examples are analyses based on

an integrated transfer function of a (partial) composition of

systems [27] and grouping of local controllers [26]. Interesting

fields that provide various techniques that can potentially

be used for the analysis of properties of SoS designed with

the local adaptations style are complex system theory and

economics [14]. Examples are analysis based on the principles

of entropy, Pareto efficiency, and the Nyquist stability.

3.2 Regional Monitoring–Local Adaptations
The second style, regional monitoring–local adaptations

enables local feedback systems to gather runtime data from

neighboring systems to support local decision making of adap-

tations. This data can be exploited to reduce the potential

side effects of purely decentralized adaptation architecture.

[24] discusses an example application where we have applied

the second style. The application in an intelligent traffic

monitoring system that provides information about traffic

jams to clients, such as traffic light controllers, driver assis-

Regional	 monitoring	 –	 local	 adapta,ons	 	

Regional	 monitoring	 –	 local	 adapta,ons	 	
	
• Feedback	 loops	 share	 informa,on	 loops	
• Create	 dependencies	

Collabora,ve	 	
Adapta,ons	

controlled by local feedback loops. For SoS, in general no

assumptions can be made about the presence of systems,

availability of external resources, prediction of faults, etc. To

deal with these uncertainties, a key challenge is to provide

guarantees for properties that span multiple systems of the

SoS. These properties refer to the adaption requirements

and other behavioral aspects such as stability and transient

behavior. Handling uncertainties is currently subject of active

research in the field of self-adaptation. SoS add another

dimension of complexity to the problems of uncertainty due

to their inherent decentralized nature.

Figure 3 shows three basic architecture styles to struc-

ture the managing layer of a SoS. We derived the styles

from classic control architectures, see e.g. [3], and generaliza-

tions over concrete architectural patterns for decentralized

self-adaptation described in [29]. The three styles provide

increasing levels of knowledge sharing and collaboration,

allowing to mitigate uncertainty at different scales.

We now discuss the three styles. We give illustrative ex-

amples from our practice, identify a number of challenges,

and provide some starting points that could help tackling

the challenges. Although the different examples do not fully

comply to Maier’s properties of a SoS, they are decentralized

systems where self-adaptation is realized with the different

styles. As such they can serve as basic examples for the

application of three architectural styles in SoS settings.

3.1 Local Adaptations
The first style, local adaptations represents a fully decen-

tralized adaptation architecture. In this style, feedback loops

do not coordinate directly, but, typically there will be in-

direct interactions. E.g., a local feedback loop may affect

the response time of the local managed system, triggering

other feedback loops to adapt. In a recently started project,

called CareSmart, we study the application of smart home

technology to provide innovative services for elderly care

living in their own houses. The architecture of the system

consists of smart home systems that collect and synthesize

sensor data at the homes of the elderly people. Useful data

is sent to mobile care assistant systems that welfare helpers

can use to make decisions about visits and interact with the

elderly or other persons when needed. This collaborative

system provides different types of local adaptations. For

example, each smart home system is provided with a context

adaptor that detects changes in the context and dynamically

adapts services based on the preferences of the elderly. E.g.,

the adaptor may activate a service that enables an elderly to

alarm a relative via voice when he/she enters the bathroom

without having the alarm with him/her. Mobile care assis-

tants also have a context-adaptor that activates for example

a service that provides specific information of an elderly once

the welfare helper approaches his or her home. Initial results

of the CareSmart project are reported in [18].

In the local adaptations style the design problem of self-

adaption for a SoS boils down to the design of local feedback

loops. However, this style provides limited support to each of

the guiding design principles for SoS proposed by Maier. As

feedback loops share no information with each other, there

is a high-degree of uncertainty regarding other systems and

the environment. Consequently, the approach is sensitive to

side-effects of indirect interactions between individually well-

optimized systems, as well as emergent behavior that results

from interactions between the compositions of systems. In

Figure 3: Basic architectural styles of decentralized
self-adaptation in SoS

the CareSmart project for example, the activation of context-

dependent services by elderly people may trigger a series of

reschedules of visit plans of mobile care assistants. To deal

with the uncertainties of local adaptations, [1] points to the

need for analysis tools that allow to understand and quantify

the effects of indirect interactions, as well as runtime support

for dynamic verification of the design assumptions coupled

with appropriate actions when violations are detected. A

number of interesting approaches have been proposed to

analyze properties of a SoS (e.g., stability) based on the

local adaptations style. Examples are analyses based on

an integrated transfer function of a (partial) composition of

systems [27] and grouping of local controllers [26]. Interesting

fields that provide various techniques that can potentially

be used for the analysis of properties of SoS designed with

the local adaptations style are complex system theory and

economics [14]. Examples are analysis based on the principles

of entropy, Pareto efficiency, and the Nyquist stability.

3.2 Regional Monitoring–Local Adaptations
The second style, regional monitoring–local adaptations

enables local feedback systems to gather runtime data from

neighboring systems to support local decision making of adap-

tations. This data can be exploited to reduce the potential

side effects of purely decentralized adaptation architecture.

[24] discusses an example application where we have applied

the second style. The application in an intelligent traffic

monitoring system that provides information about traffic

jams to clients, such as traffic light controllers, driver assis-

Collabora,ve	 adapta,ons	 style	

The rest of this paper is structured as follows. In Section II
we provide background on MAPE. Section III introduces
the mobile learning application, describes the problem, and
outlines the architecture of the self-adaptive solution. In Sec-
tion IV, we describe in detail the behavioral models of the self-
adaptive system. Section V describes the required properties
and discusses verification results. Section VI briefly explains
the mapping of behavioral models to implementation. We draw
conclusions and outline plans for future work in Section VII.

II. BACKGROUND AND RELATED WORK

MAPE was introduced as the conceptual core of an au-
tonomic manager, which is central to IBM’s framework for
Autonomic Computing [2]. The MAPE components realize the
primary functions of a feedback loop. The Monitor component
gathers relevant information from the underlying managed
system and the environment. The Analyze component assesses
the collected data to determine the system’s need to satisfy
the adaptation objectives. The Plan component constructs the
actions necessary to achieve the system’s objectives. Finally,
Execute component carries out changes on the managed sys-
tem. The additional Knowledge component maintains repre-
sentations of the managed system and environment, adaptation
objectives, and other relevant state that is shared by the MAPE
components. MAPE is therefore also referred as MAPE-K.

Rainbow [7] offers a reusable architectural framework for
building self-adaptive systems. The architectural layer that
deals with self-adaptation, resembles similarities with a MAPE
loop. Rainbow supports monitoring and adaptation of soft-
ware systems that are distributed in a network. However,
the control of adaptation is centralized. Another interesting
example of a centralized feedback loop is described in [8].
The authors propose an approach to achieve QoS for service-
based systems through an external MAPE loop. Formally
specified requirements are automatically analyzed to identify
and enforce optimal system configurations. The approach uses
Markov models and probabilistic computation tree logic, and
focuses on improving response time and dealing with failures.

A number of authors have studied interactions between
feedback loops, which are more or less explicitly modeled as
MAPE loops. [9] expresses structural constraints over an ar-
chitectural specification that are used by component managers
to automatically configure the system. [10] introduces a gossip
protocol to make this approach scalable. [11] makes control
loops explicit and present a UML profile for control loops that
extends UML modeling concepts. [12] extends MAPE with
support for inter-loop and intra-loop coordination. [13] intro-
duces the concept of adaptive goal in service-based systems.
Adaptive goals are responsible for adapting the goal model
at runtime when needed. [14] presents a reference model for
adaptive software that supports separation of concerns among
feedback loops required to address control objectives over
time. Finally, [6] describes patterns of interacting MAPE loops
derived from implemented self-adaptive systems.

The work presented in this paper contributes to the pre-
sented background with a rigorous specification and verifica-

tion of the behavior of the distinct components of MAPE loops
and their interactions, for a concrete application.

III. TOWARDS A ROBUST M-LEARNING APPLICATION

In this section we give a brief summary of the mobile
learning application we developed, we pinpoint the robustness
problem we faced with insufficient GPS accuracy, and we
outline how we tackled this problem by extending the design
of the legacy system with a self-adaptation layer.

A. Mobile-Learning Application
The mobile learning application supports outdoor learning

activities, where students use GPS-enabled mobile devices. A
learning activity takes place in the context of a lecture (of 1
or 1.5 hour) and is composed of a set of tasks (typically 4 to
8 tasks). An example of a learning activity is to measure and
calculate properties of triangles, and one concrete task is to use
triangulation techniques to find locations on the field given the
three side measurements of a triangle, and having two of the
triangle locations already marked on the field. Fig. 1 shows a
use case scenario, where three groups of students (represented
by MVDs) perform tasks of a learning activity.

MVD 1

Learning
Activity Server

Communication Infrastructure

PHONE
SERVER

Communication
Infrastructure

Node

Component

KEY

 3G
Communication

MVD 2

MVD 3

Mobile
Device
Node

Activity
Server
Node

Mobile
Virtual
Device

LayerMVD Manager

Device Agent
Activity
Agent Repository

Mobile Learning Application
Mobile Learning Application

Fig. 1. Use case scenario of a learning activity

The application is conceived as a distributed agent-based
system. A Device Agent deployed on each mobile phone pro-
vides the learning services to the student (gathering locations,
calculating distances, etc.). The device agents of a group that
work on the same tasks form an MVD. Within an MVD, one of
the agents is elected as master, while the others serve as slaves.
The MVD Manager is responsible for the management of the
MVD. E.g., a new master is elected when the master phone
runs out of energy. The master communicates via 3G with the
Server using the Communication Infrastructure. Management
of the tasks at the server is the responsibility of the Activity
Agent. The master of each MVD receives new tasks from the
activity agent at the server and reports the results back when
a task is finished.

B. Problem Description
Due to changing environmental conditions, the GPS sensi-

tivity can vary over time, which affects the accuracy of the
measurements and may undermine the use of the application

add this to the MVD. We say can trigger, because there may
be redundant phones in the MVD, so that no replacement is
required.

The second MAPE loop (MVD Concern) is distributed over
the devices of the MVD. This MAPE loop uses a master-
slave pattern [6]. Fig. 4 shows the distribution of MAPE
components for three phones. The master-slave pattern enables
coordination of self-adaptation among nodes in a distributed
system. Devices have similar roles (master and slave) both
with respect to adaptation in the second MAPE loop and the
functionality provided by mobile learning application (i.e., the
managed system). All devices of an MVD (master and slaves)
monitor the mobile learning application and execute adaptation
actions on it, but only the master is responsible for analysis
and planning adaptations.

If the master detects that the number of GPS services in
the MVD is not sufficient for the current task, it looks for an
additional service. If there is a free GPS service available, the
device that provides that service is dynamically added to the
MVD, if not, the master periodically re-checks.

The master role can be performed by any of the phones in
an MVD, making the organization robust in case of a master
failure. In this paper, we abstract from the mechanisms to
elect a new master. We refer the interested reader to [15] for
self-healing mechanisms to deal with failures of a master in a
master-slave organization deployed in a distributed application.

SLAVE
PHONE

Component

Node LayerKEY

A P

M EM E

MASTERSLAVE

System

PHONE PHONE

M E

Mobile Learning
Application

Mobile Learning
Application

Mobile Learning
Application

SA

MS

Trigger

SA:

MS:

Self-Adaptation

Managed System

Fig. 4. Master/Slave MVD self-healing pattern (for 3 phones)

IV. BEHAVIORAL DESIGN

The structural models of the self-adaptive layer described
in the previous section show the primary building blocks of
the MAPE loops and there interactions. These models are
useful for explaining the adaptation mechanisms at a high-
level of abstraction, and defining course-grained modules to
implement the self-adaptive layer. However, to guarantee the
robustness requirements, we need a rigorous specification of
the self-adaptive behaviors, together with the properties that
express the robustness requirements. This specification allows
then to verify whether the self-adaptive behaviors comply to
the properties. To that end, we formally specify the behavioral
design of the self-adaptive layer.

In this research, we use Uppaal [16], a model checking
tool that supports modeling of behaviors (also called pro-
cesses) using timed automata and verification of the robust-
ness properties expressed in timed computation tree logic
(TCTL). Timed automata and TCTL provide an accessible
formalism. Concretely, a timed automaton is a finite-state
machine extended with clock variables, which are used to
synchronize behaviors. The automata represent states in which
a behavior can be found and define actions to be performed
on the transition between states. Behaviors can communicate
through channels by signal passing, where the sender process
x! synchronizes with the receiver process x?. The automata
can be complemented with expressions specified in a C-like
language to define data structures (struct concept) and func-
tions. Expressions in TCTL describe state and path formulae
allowing the verification of properties of interest, such as
reachability (a system should/can/cannot etc. reach a particular
state or states), liveness (something eventually will hold), etc.

In the rest of this section, we describe the behaviors of the
self-adaptive layer in three parts. We start by presenting the
processes of the external world. Then, we present the behaviors
of first MAPE loop (GPS Service Concern) and conclude with
the behaviors of the second MAPE loop (MVD Concern). For
the managed system, we only model the essential aspects that
are required with respect to self-adaptation.

A. External World Processes

The need for self-adaption is triggered by changes in the
external world. To that end, it is necessary to formally specify
an abstraction of the external world. In our case, the external
world consists of three behaviors: the Activity Agent, the
Context, and the GPS Module. Fig. 5 shows the behaviors
in relation to the MAPE loop for GPS service self-adaptation
(which we discuss below).

An Activity Agent, located at the activity server, is in
charge of setting the requirements for the GPS accuracy to
perform the tasks, and the number of mobile devices that are
required per group. Fig. 6 shows the automaton of the Activity
Agent1. A first step initializes the distributed application,
defining an initial deployment of phones to MVDs. Next, the
Activity Agent is in charge to control the activity flow. On a
periodic basis2 (Time Activity), the activity agent sends new
tasks in the activity with new requirements (SubmitTask state),
until the tasks in the activity (TotalLoops) are completed (Final
state). Task requirements define the desired minimal accuracy
necessary for the GPS modules and the number of GPS mod-
ules in each MVD (represented by MASactivity.min accuracy
and MASactivity.number GPS) (see Fig. 5).

The environment influences the GPS module quality, po-
tentially bringing a GPS service to an undesired state. The

1Transitions between states fire based on conditions and/or received signals
(we place these above transition arrows) and can perform actions or send
signals to other processes (we place these below transition arrows).

2The model abstracts the Activity Agent behavior by sending new require-
ments on a period basis. In practice, there is an activity flow between server
and device agents based on the assignment and completion of tasks.

Collabora,ve	 adapta,ons	 style	
	
• Feedback	 loops	 adapt	 collabora,vely	 	
•  Increased	 dependencies	

A	 key	 challenge	
	
•  How	 to	 guarantee	 proper,es	 that	 span	 mul,ple	 systems	
of	 SoS?	 	

•  Beyond	 correctness	 by	 construc,on	
•  Run,me	 analysis	 &	 verifica,on	
•  Learning	 approaches	

•  Control	 theory,	 e.g.,	 stability	 analysis	
•  Guarantees	 with	 arbitrary	 interac,ons	 =	 open	 problem	

•  Complex	 systems	 theory,	 e.g.,	 entropy	

•  System	 architects	 versus	 SoS	 architect	

Wrap	 up	 	
	
• Self-‐adapta,on	 as	 a	 means	 to	 separate	 concerns	
to	 mi,gate	 uncertainty	 	
• Three	 styles	 provide	 increasing	 degree	 of	
knowledge	 sharing	 and	 collabora,on	
• Design	 power	 vs.	 increased	 dependencies	

• Key	 challenge:	 provide	 guarantees	 of	 proper,es	
that	 span	 mul,ple	 systems	 of	 SoS	

References	
•  M.	 W.	 Maier.	 Architec,ng	 principles	 for	 systems-‐	 of-‐systems.	 Systems	
Engineering,	 1(4):267–284,	 1998.	
•  B.	 Cheng,	 et	 al.	 SoRware	 engineering	 for	 self-‐adap,ve	 systems:	 A	 research	
roadmap.	 In	 SoRware	 Engineering	 for	 Self-‐Adap,ve	 Systems,	 volume5525.	
Springer,	 2009.	
•  R.	 Lemos,et	 al.	 SoRware	 engineering	 for	 self-‐adap,ve	 systems:	 A	 second	
research	 roadmap.	 In	 SoRware	 Engineering	 for	 Self-‐Adap,ve	 Systems	 II,	
volume	 7475	 of	 Lecture	 Notes	 in	 Computer	 Science.	 Springer,	 2013.	
•  D.	 Weyns,	 S.	 Malek,	 and	 J.	 Andersson.	 Forms:	 Unifying	 reference	 model	
for	 formal	 specifica,on	 of	 distributed	 self-‐adap,ve	 systems.	 ACM	
Transac,ons	 on	 Autonomous	 and	 Adap,ve	 Systems,	 7(1),	 2012.	 	
•  D.	 Weyns,	 B.	 Schmerl,	 V.	 Grassi,	 S.	 Malek,	 R.	 Mirandola,	 C.	 Prehofer,	 J.	
Wunke,	 J.	 Andersson,	 H.	 Giese,	 and	 K.	 Goeschka.	 On	 panerns	 for	
decentralized	 control	 in	 self-‐adap,ve	 systems.	 Lecture	 Notes	 in	 Computer	
Science	 vol.	 7475,	 Springer,	 2012.	

